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Abstract: Pentadecapeptides based on modified murine lactoferricin (LFM) sequences show varying degrees
of antibacterial activity against Escherichia coli and Staphylococcus aureus. By means of projections to
latent structures (PLS), a good correlation is obtained if the biological activity is modelled as a function of
variables describing peptide properties, e.g. a-helicity, hydrophobicity/hydrophilicity and charge. Using
variables derived from a principal component analysis (PCA) of all naturally occurring amino acids, it is
possible to describe the amino acid content of the peptides using three variables per amino acid position.
The resulting descriptor matrix is then used to develop quantitative structure–activity relationships (QSAR).
It is shown that the theoretically derived descriptors model the activity of the peptides better than the earlier
model, and that properties of the peptides other than antibacterial activity can be predicted. Copyright
© 2001 European Peptide Society and John Wiley & Sons, Ltd.
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INTRODUCTION

Drug Design

The continuing search for new, pharmaceutically
interesting compounds can, from a chemist’s point
of view, be divided into two main activities: (i) the
search for, and characterization of, new active sub-
stances (lead compounds); and (ii) the modification
of lead compounds into useful and efficient drugs.
When searching for new compounds it is common
to screen biological material for new substances
that show activity in assays, to synthesize chemical
libraries either by using combinatorial chemistry or
by using a competitor’s active substance as a start-

ing point in the search for compounds that can be
patented. When trying to modify lead compounds,
new compounds are synthesized based on (quali-
fied) guesses as to which of the molecule’s features
are important for its activity, i.e. we try to establish
qualitative structure–activity relationships (QSAR).
In this way, a large number of substances are pro-
duced and the possibility of finding a substance
with better qualities than the lead compound in-
creases with the number of substances synthesized.
Instead of this trial and error approach it should be
possible to use some strategy to design experiments
that will minimize the work needed and maximize
the information gained. In order to achieve this, it is
imperative that the molecule can be described in
such a way that its effect can be predicted prior to
synthesis of a compound.

Quantitative Structure–Activity Relationships (QSAR)

The concept of QSAR is based on the assumption
that individual molecules can be described by
physicochemical variables and that the model ob-
tained can be related to the (biological) activity of

Abbreviations: LFB, bovine lactoferrricin; LFM, murine lactofer-
ricin; MIC, minimum inhibitory concentration; PCA, principal com-
ponent analysis; PLS, projections to latent structures; QSAR,
quantitative structure–activity relationships.
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the molecule. Examples that are relevant to drug
discovery were already being published during the
19th century by Crum-Brown and Fraser [1], who
related the water solubility of alkaloids to their toxi-
city, and by Overton [2] and Meyer [3], who devel-
oped models in which hydrophobicity was related to
narcotic effect. It should be obvious that models are
merely descriptions of reality and are only valid for
the substances under investigation or for very simi-
lar substances. If compounds of a very different
structure are included, it is likely that other proper-
ties, e.g. bioavailability, will have to be considered.
In the work by Hansch et al. [4], this problem was
partly solved by using several variables describing
hydrophobicity and electronic properties and by re-
lating them to the effect using multiple regression.
Improvements in instrumentation have led to data
becoming cheaper all of the time and molecules can
now be described by more and more variables;
hence, data matrixes are getting larger. Regression
methods are not well suited for use when the num-
ber of objects (equations) is smaller than the num-
ber of variables, and difficulties arise when the
number of studied responses increases, e.g. toxicity
and therapeutic activity studied simultaneously. A
method such as projections to latent structures
(PLS) [5,6] copes with these types of problems and
has found widespread use in QSAR. There are nu-
merous examples in the literature, e.g. the study by
Hellberg et al. [7], in which the anaesthetic activity
and toxicity of halogenated ethyl methyl ethers were
examined, and later work where biologically active
peptides were studied [8,9]. As descriptors for the
peptides, the authors used three scales for each
amino acid derived from a principal component
analysis (PCA) [10] of a large number of variables
describing the individual amino acids.

Peptides as Drugs

Over the years, peptides have proved to be interest-
ing in different types of therapy, e.g. insulin in the
treatment of diabetes, and peptides as vaccines
[11–13] and antibiotics [14–18]. A molecule like
insulin is naturally difficult to modify partly be-
cause it is produced biochemically but mostly be-
cause the large number of amino acids makes it
difficult to scan the activity as a function of amino
acid content in a rational way. When dealing with
smaller peptides, the use of machines for synthesis
has made it possible to gain rapid access to a
number of newly modified peptides that can be
compared with the lead compound. Modified pen-

tadecapeptides of murine lactoferricin (LFM) have
been studied with respect to their antibiotic activity
against Escherichia coli and Staphylococcus aureus
[19]. The study revealed a clear correlation between
the structure of the peptides, as described by a
number of variables used to characterize the
molecule, and the antibiotic activity. A drawback
associated with the use of descriptors that describe
the entire molecule, instead of its building blocks, is
that it is virtually impossible to predict which amino
acids should be replaced when attempting to im-
prove the activity of the peptides. The peptides used
in the study had been modified in only four of the
15 positions and we were interested in finding out
whether it would be possible to use the descriptors
for amino acids published by Hellberg et al. [9] to
predict the activity of the individual peptides.

Peptide Descriptors

Strøm et al. [19] characterized 19 peptides with 12
descriptors that were either measured, as helicity in
different media and HPLC retention time, or calcu-
lated. The calculated variables were: net charge at
pH 7; micelle affinity; Eisenberg, Garnier and
Chou–Fasman a-helix propensities; Kyte–Dolittle
hydrophobicity; Emini surface index; mean hydro-
phobic moment; and mean charge moment. The
minimum inhibitory concentration (MIC) against
both E. coli and S. aureus was used as the depen-
dent variable (Table 1). The descriptors used ex-
plained 82% of the variation in antibacterial activity
by using 56% of the variation in the descriptors.
These results were very encouraging and made an
extension of the study of interest, in order to see
whether descriptors for the amino acids could be
used for describing the entire peptide. The theoreti-
cal description of the peptides was based on the
work by Hellberg et al. [9], in which a property
matrix of 29 descriptors for each coded amino acid
had been used in a PCA. The original variables
contained information about hydrophilicity/hydro-
phobicity, size, acidity constants, chemical shifts
and HPLC retention times. The outcome of the anal-
ysis was three descriptors—z1, z2 and z3—describ-
ing each amino acid (Table 2). For the modified LFM
peptides, only four positions had variations in
amino acid substitution, resulting in a matrix of 19
objects (peptides) described by 12 new variables (z1,
z2 and z3 for each of the four amino acids). The
resulting matrix was then used to model the mea-
sured/calculated descriptors for the peptides or for
the activity of the peptides (as a logarithm of the
MIC values).

Copyright © 2001 European Peptide Society and John Wiley & Sons, Ltd. J. Peptide Sci. 7: 74–81 (2001)
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Table 2 Z Scales for Coding of Amino Acids

z3Amino acida z1 z2

Ala A 0.090.07 −1.73
−1.29Val V −2.69 −2.53

Leu L −0.98−4.19 −1.03
Ile −1.03I −4.44 −1.68
Pro P 2.23−1.22 0.88

0.45Phe F −4.92 1.30
Trp W 0.85−4.75 3.65
Met −0.41M −2.49 −0.27
Lys K −3.142.84 1.41
Arg −3.44R 2.88 2.52
His H 1.112.41 1.74
Gly 0.30G 2.23 −5.36
Ser S 0.571.96 −1.63
Thr T 0.92 −1.40−2.09
Cys C 0.71 −0.97 4.13
Tyr Y 0.01−1.39 2.32
Asn 0.84N 3.22 1.45
Gln Q 2.18 0.53 −1.14
Asp D 2.363.64 1.13
Glu E 3.08 0.39 −0.07

a Symbols and abbreviations are in accordance with IU-
PAC recommendations.

If the aim is to predict the outcome of any amino
acid replacement, it is imperative that the variables
of the model contain information about the individ-
ual amino acids and not only macroscopic values
for the entire peptide. Thus, if it were possible to
use numerical values that describe each individual
amino acid it would be possible to predict the prop-
erties or the activity of any modified peptide.

In order to investigate whether the theoretical
descriptors developed by Hellberg et al. [9] contain
the same information as the variables describing
the peptides in Strøm et al.’s [19] study, a PLS
analysis was performed. The theoretical variables
were used as independent variables (X matrix) and
the variations in the measured/calculated variables
describing the peptides were used as dependent
variables (Y matrix). The analysis yielded five signif-
icant variables explaining 80% of the variation in Y

using 98% of the variation in X. The result implies
that even though the variation in peptide descrip-
tors can be explained by the theoretically derived
descriptors, the peptide descriptors used by Strøm
et al. [19] contained information that is not present
in the descriptors of the amino acids, vide infra. On
the other hand, the graphical presentation of the
results of the PLS analysis presented in Figure 1
(observed vs. predicted helicity of peptides in the
presence of SDS) and in Figure 2 (observed vs.
predicted retention time on HPLC) shows that there
is a surprisingly good correlation between the ob-
served properties of the peptides and the calculated
properties based on Hellbergs z descriptors.

RESULTS AND DISCUSSION

Analysis of Peptide Properties

Even though it is feasible to create a model from
measured or calculated peptide properties, as
shown by Strøm et al. [19], that gives a good corre-
lation between peptide properties and antibacterial
activities, it is not implied that it is straightforward
to use this model when designing peptides with
enhanced antibacterial activities. The problem is
inherent in the way that the model is designed; the
authors show that it is possible, or even easy, to tell
which macroscopic properties in the peptides
should be adjusted in order to achieve the preferred
biological activity. The almost insurmountable task
is to determine how to modify the amino acid se-
quence in order to give the peptide the necessary
bulk properties. There are two closely related strate-
gies to resolve this problem: one is to try to derive
quantitative relations between the amino acid se-
quence and the macroscopic properties of the corre-
sponding peptide; and the other is to derive directly
a QSAR between the amino acid sequence and the
antimicrobial activities. Both of these strategies are
addressed in the present study.

Figure 1 Observed vs. predicted peptide helicity in the
presence of SDS.

Copyright © 2001 European Peptide Society and John Wiley & Sons, Ltd. J. Peptide Sci. 7: 74–81 (2001)
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A few points should be made here about the
information contained in the theoretically derived z

scales. HPLC data were included in the original
matrix of Hellberg et al., from which the descriptors
were derived; however, the solvent systems than
were used for the HPLC analysis of the peptides in
Strøm et al. [19] were completely different. Still,
retention times are generally considered to correlate
fairly well with hydrophilicity/hydrophobicity be-
cause molecular interaction with solvent and sta-
tionary phase, i.e. solubility, is what governs the
retention time. The obvious conclusion is that infor-
mation about solubility is additive and that, in some
sense, the solubility of the peptide is a sum of the
solubilities of the amino acids included in the
peptide.

As mentioned above, there is more information
contained in the peptide matrix than in the matrix
consisting of the z scales. One way of explaining
this is to look at how multivariate analytical meth-
ods, e.g. PLS, treat data. The way to describe an
object in such an analysis is to consider it as a
point in an n-dimensional space, where n is equal
to the number of variables. The position of each
point is defined by the measured values for each of
the variables. The result of this is that peptides
containing the same amino acids will be positioned
at the same point regardless of the sequence of the
amino acids because no sequence information is
present. Against this background, it is even more
surprising that such a good correlation exists be-
tween the observed and the predicted a-helicity.
Whether this is a coincidence due to the small
variation in helicity of the peptides studied (5–20%)

or whether it implies that secondary structure is
mainly governed by which amino acids are present
and not by their position in the peptide needs to be
further investigated.

Another piece of information that needs to be
mentioned is that peptide 1, native LFM, is the
peptide that exhibits the lowest correlation between
observed and predicted values. This is explained by
the fact that LFM is the only peptide that does not
contain a Trp residue in position 8. (In a paper by
Strøm et al. [20], it was shown that including Trp in
this position leads to more active peptides and that
this substitution has been made in all modified
molecules.) Still, the correlation is at such a level
that it should be possible to predict the activities of
peptides with a completely different amino acid con-
tent than the ones included in this study.

Analysis of Peptide Activity

To be able to predict as many properties as possible
for a peptide is of course of interest, but the main
objective is to make good predictions for biological
response. If amino acid descriptors contain infor-
mation about, for example, the antibiotic activity of
the peptides, models can be developed that predict
which amino acids should be included in the pep-
tide before its synthesis. To do this, a new PLS
analysis was performed using the amino acid de-
scriptors for modelling the activity of the peptides,
using the logarithm of the activity of the peptides as
the response. The analysis resulted in three signifi-
cant components explaining 99% of the variation in
antibacterial activity, using 81% of the variation in
the X matrix. As for the previous analysis, the fact
that not all of the variation in the independent
variables was explained is partly due to the lack of
sequence information in the variables. As is seen
from the results, the theoretically derived variables
gave an equally good, or better, model for the activi-
ties compared with the earlier study [19,21] and,
hence, the same information is present in both
matrices.

The question to be answered is whether the model
is able to predict the activity of the peptides. In
Figure 3, predicted vs. observed antibacterial activ-
ity against E. coli is plotted, while the same plot for
S. aureus is presented in Figure 4. The fact that the
peptides exhibiting the lowest response all have the
same observed value while predicted values differ is
a result of the way in which the biological testing
was performed. For compounds with low activity,
the actual MIC value is not measured because theFigure 2 Observed vs. predicted HPLC retention times.

Copyright © 2001 European Peptide Society and John Wiley & Sons, Ltd. J. Peptide Sci. 7: 74–81 (2001)
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Figure 3 Observed vs. predicted activity against E. coli.

that the sequence homology between LFB and LFM
is only 53%.

Analysis of Peptide Composition

In order to examine which amino acids are most
important for modelling the activity, the loadings,
wk, for the 12 variables have to be considered. The
numerical values are listed in Table 3, while the
first loading vectors are plotted in Figure 5. The way
to interpret loadings is to look at their absolute
values, i.e. examine how far from the origin they are
situated. From this it is seen that the amino acid
residue in position 8 is the most important for
explaining activity (keeping in mind that the PLS

Table 3 Loadings (w*c) for the Variables in the
PLS Model

w*c [3]w*c [2]w*c [1]Variable name

0.1161a 0.5580.302
0.026 −0.4601b −0.077

1c −0.116 0.521 0.311
0.111 0.459−0.6238a

0.517 0.225 0.2018b
0.125 0.092 0.1178c

0.3640.0950.3019a
0.035 −0.381 −0.1379b

9c 0.208−0.130 0.383
−0.277 −0.135−0.31313a

−0.059 −0.216 0.54913b
−0.106 −0.124 0.06113c

0.3440.257 0.265Log E. coli

0.320 0.328 0.192Log S. aureus

concentrations would be too high. Instead, the
value is reported as higher than the threshold value
of 500 mM. One way of presenting results that seem-
ingly would be better is to exclude those peptides
that do not fit the model; however, their inclusion
shows the stability of the model.

Another way of checking the validity of the model
is to include objects (peptides) that were not part of
the calculations in order to see how well they are
described by the model. In this case, a penta-
decapeptide from bovine lactoferrricin (LFB) is in-
cluded as object 0. The plot reveals that this peptide
is well described by the model, even though the
predicted value is somewhat lower than the ob-
served one. This is still a good result considering

Figure 4 Observed vs. predicted activity against S. au-
reus. Figure 5 First to loading vectors from PLS analysis.
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analysis undertaken has no sequence information).
A closer examination of position 8 reveals that it
should contain an amino acid that exhibits a large
negative z1 and a large positive z2, while z3 is of less
importance. (The properties contained in z1 are
mainly related to hydrophilicity and z2 contains
information about size, but the simplest way to use
this information is to look for amino acids that have
the principal properties desired instead of looking at
the molecular descriptors.) From Table 2 it seems
as though Trp is in fact the best choice, which
Strøm et al. [20] also concluded. For position 1, z1 is
of less importance while z3 (which contains infor-
mation about charge) should be large and z2 should
be negative. The exact same pattern is also notice-
able for position 9. A substitution that would fulfil
the requirements would be the incorporation of Cys.
Position 13 has all three components on the nega-
tive side and, numerically, is of the least impor-
tance. A smaller effect is obtained if substitutions
are made here, but any amino acid that is to be
incorporated should have negative z1, z2 and z3

values, e.g. Val, Leu, Ile or Met. Of these four possi-
ble amino acids, Ile and Met have the largest nega-
tive values for z2 and should be the first choice in
modified peptides.

CONCLUSIONS

Using PLS for QSAR it is obvious that theoretically
derived descriptors for individual amino acids con-
tain information that is necessary for explaining
peptide activity. From earlier studies it is known
that charge is important for modelling activity [19],
but the present study shows that variables describ-
ing lipophilicity are equally important. It is surpris-
ing that, using the theoretical descriptors, it is
possible to model experimentally derived values for
peptides, as well as calculated descriptors. In order
to obtain even higher biological activities, new mod-
ified peptides can be designed based on the results
of the present study. Another extension of this
study would be the inclusion of other modified pep-
tides and the prediction of the activity of the new
peptides. The new peptides should span a larger
variation in amino acid composition in order to
better understand which factors govern the activity.

An earlier study [8] claimed that, because the
descriptors for the individual amino acids are so
well correlated with the activity, the secondary
structure of the peptides is of less importance. This
is probably the case where short peptides are em-

ployed. We are not convinced that this is the case
with the pentadecapeptides studied here, because
descriptors such as a-helicity show a good correla-
tion between observed and predicted values. How-
ever, further investigations of longer peptides need
to be undertaken in order to answer this question.

Experimental

The program package Simca-P 8.0 (Umetrics, Umeå,
Sweden) was used for all calculations. The theoreti-
cally derived z scales were used without scaling,
because the variables used for the original analysis
had been scaled, and data were centred when using
experimental variables as dependent variables. In
these analyses, the experimentally derived variables
were scaled to unit variance and centred. In the PLS
analysis of peptide activity, the activity data were
used as the logarithm but neither data set was
centred.
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